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Lecture 15 – Program Design

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course
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Last Class We Covered
• Functions

– Returning values
– Returning multiple values at once

• Modifying parameters
– Mutable
– Immutable

• Modular programming
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Any Questions from Last Time?
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Today’s Objectives
• To discuss the details of “good code”
• To learn how to design a program
• How to break it down into smaller pieces

– Top Down Design
• To introduce two methods of implementation
• To learn more about Modular Development



www.umbc.edu

“Good Code” – Readability
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Motivation
• We’ve talked a lot about certain ‘good habits’ 

we’d like you all to get in while writing code
– What are some of them?

• There are two main reasons for this
– Readability
– Adaptability
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Readability
• Having your code be readable is important, 

both for your sanity and someone else’s

• Having highly readable code makes it easier to:
– Figure out what you’re doing while writing the code
– Figure out what the code is doing when you come 

back to look at it a year later
– Have other people read and understand your code
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Improving Readability
• Improving readability of your code can be 

accomplished in a number of ways
– Comments
– Meaningful variable names
– Breaking code down into functions
– Following consistent naming conventions
– Language choice
– File organization
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Readability Example
• What does the following code snippet do?

def nS(p, c):
l = len(p)
if (l >= 4):

c += 1
print(p)
if (l >= 9):

return p, c
# FUNCTION CONTINUES...

• There isn’t much information to go on, is there?
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Readability Example
• What if I added meaningful variable names?

def nS(p, c):
l = len(p)
if (l >= 4):

c += 1
print(p)
if (l >= 9):

return p, c
# FUNCTION CONTINUES...
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Readability Example
• What if I added meaningful variable names?

def nextState(password, count):
length = len(password)
if (length >= 4):

count += 1
print(password)
if (length >= 9):

return password, count
# FUNCTION CONTINUES...
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Readability Example
• And replaced the magic numbers with constants?

def nextState(password, count):
length = len(password)
if (length >= 4):

count += 1
print(password)
if (length >= 9):

return password, count
# FUNCTION CONTINUES...



www.umbc.edu

Readability Example
• And replaced the magic numbers with constants?

def nextState(password, count):
length = len(password)
if (length >= MIN_LENGTH):

count += 1
print(password)
if (length >= MAX_LENGTH):

return password, count
# FUNCTION CONTINUES...
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Readability Example
• And added vertical space?

def nextState(password, count):
length = len(password)
if (length >= MIN_LENGTH):

count += 1
print(password)
if (length >= MAX_LENGTH):

return password, count
# FUNCTION CONTINUES...
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Readability Example
• And added vertical space?

def nextState(password, count):
length = len(password)

if (length >= MIN_LENGTH):
count += 1
print(password)

if (length >= MAX_LENGTH):
return password, count

# FUNCTION CONTINUES...
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Readability Example
• Maybe even some comments?

def nextState(password, count):
length = len(password)

if (length >= MIN_LENGTH):
count += 1
print(password)

if (length >= MAX_LENGTH):
return password, count

# FUNCTION CONTINUES...
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Readability Example
• Maybe even some comments?

def nextState(password, count):
length = len(password)

# if long enough, count as a password
if (length >= MIN_LENGTH):

count += 1
print(password)

# if max length, don't do any more
if (length >= MAX_LENGTH):

return password, count
# FUNCTION CONTINUES...
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Readability Example
• Now the purpose of the code is a bit clearer!

– (It’s actually part of some code that generates a 
complete list of the possible passwords for a 
swipe-based login system on a smart phone)

• You can see how small, simple changes 
increase the readability of a piece of code
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Commenting is an “Art”
• Though it may sound pretentious, it’s true

• There are NO hard and fast rules for when to a 
piece of code should be commented
– Only guidelines
– (This doesn’t apply to required comments 

like file headers, though!)
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General Guidelines
• If you have a complex conditional, give a brief 

overview of what it accomplishes
# check if car fits customer criteria
if color == "black" and int(numDoors) > 2 \

and int(price) < 27000:

• If you did something you think was clever, 
comment that piece of code
– So that “future you” will understand it!
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General Guidelines
• Don’t write obvious comments

# iterate over the list
for item in myList:

• Don’t comment every line
# initialize the loop variable
choice = 1
# loop until user chooses 0
while choice != 0
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“Good Code” – Adaptability
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Adaptability
• Often, what a program is supposed to do 

evolves and changes as time goes on
– Well-written flexible programs can be easily 

altered to do something new
– Rigid, poorly written programs often take a lot of 

work to modify

• When coding, keep in mind that you might 
want to change or extend something later



www.umbc.edu

Adaptability: Example
• Remember how we talked about not using 

“magic numbers” in our code?

Bad:

def makeGrid():
temp = []
for i in range(0, 10):

temp.append([0] * 10)
return temp

Good:

def makeGrid():
temp = []
for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)
return temp
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Adaptability: Example
• In the whole of this program we use 
GRID_SIZE a dozen times or more
– What if we suddenly want a bigger or smaller 

grid?  Or a variable sized grid?
– If we’ve left it as 10, it’s very hard to change

• But GRID_SIZE is very easy to change
– Our program is more adaptable
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Solving Problems
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Simple Algorithms
• Input

– What information we will be given, or will ask for

• Process
– The steps we will take to reach our specific goal

• Output
– The final product that we will produce
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More Complicated Algorithms
• We can apply the same principles to more 

complicated algorithms and programs

• There may be multiple sets of input/output, 
and we may perform more than one process
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Complex Problems
• If we only take a problem in one piece, it may 

seem too complicated to even begin to solve
– Creating your own word processor
– Making a video game from scratch
– A program that recommends classes based 

on availability, how often the class is 
offered, and the professor’s rating
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Top Down Design
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Top Down Design
• Computer programmers use a divide and 

conquer approach to problem solving: 
– Break the problem into parts
– Solve each part individually
– Assemble into the larger solution

• These techniques are known as 
top down design and modular development
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Top Down Design
• Breaking the problem down into pieces makes 

it more manageable to solve

• Top-down design is a process in which a big 
problem is broken down into small sub-
problems, which can themselves be broken 
down into even smaller sub-problems
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Top Down Design: Illustration
• First, start with a 

clear statement of 
the problem or 
concept

• A single big idea

Big Idea
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Top Down Design: Illustration
• Next, break it down 

into several parts
Big Idea

Part 1 Part 2 Part 3
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Top Down Design: Illustration
• Next, break it down 

into several parts
• If any of those parts 

can be further 
broken down, then 
the process 
continues…

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B
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Top Down Design: Illustration
• And so on…

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2
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Top Down Design: Illustration
• Your final design 

might look like this 
chart, which shows 
the overall structure 
of the smaller pieces 
that together make 
up the “big idea” of 
the program

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2
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Top Down Design: Illustration
• This is like an 

upside-down tree, 
where each of the 
nodes represents a 
process 

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2
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Top Down Design: Illustration
• The bottom nodes 

represent pieces 
that need to be 
developed and then 
recombined to 
create the overall 
solution to the 
original problem.

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2
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Analogy: Paper Outline
• Think of it as an outline for a paper you’re 

writing for a class assignment

• You don’t just start writing things down
– You come up with a plan of the important points 

you’ll cover, and in what order
– This helps you to formulate your thoughts as well
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Implementing from a 
Top Down Design
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Bottom Up Implementation
• Develop each of the 

modules separately
– Test that each one 

works as expected

• Then combine into 
their larger parts
– Continue until the 

program is complete

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2
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Bottom Up Implementation
• To test your functions, you will probably use 
main() as a (temporary) testing bed

• Calling functions with different test inputs
– Ensuring that functions “play nicely” together
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Top Down Implementation
• Create “dummy” functions that fulfill the 

requirements, but don’t perform their job
– For example, a function that is supposed to take in 

a file name and return the weighted grades simply 
returns a 1

• Write up a “functional” main() that calls 
these dummy functions
– Help pinpoint other functions you may need
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How To Implement?
• Top down?  Or bottom up?

• It’s up to you!
– As you do more programming, you will 

develop your own preference and style

• For now, just use something – don’t code up 
everything at once without testing anything!
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In-Class Example
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In-Class Example
• (Expanding on the “Used Car Lot” from Lab 8)
• You run a Used Car Lot franchise, with 

multiple locations in the area
– Every morning you get a list of available cars from 

each location as a separate file
– Customers may come in and request any 

combination of features (color, price, etc.)
– You have to handle your stock for the day, and 

handle customers who ask for impossible things
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In-Class Example
• What is the “big picture” problem?

• What sort of tasks do you need to handle?
– What functions would you make?
– How would they interact?
– What does each function take in and return?

• What will your main() look like?



www.umbc.edu

In-Class Example
• Specifics:

– Keep track of what cars are available at each 
location, and which have already been sold

• Read in stock at beginning of program (“morning”)
• Write down stock at end of the program (“closing shop”)

– Don’t accept requests for things like 8 door cars
– Customers don’t need a preference for everything

• e.g., a 4 door under $35,000 – but don’t care what color

– Offer the option to buy from another location
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Modular Development
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Why Use Modular Development?
• Modular development of computer software:

– makes a large project more manageable
– is faster for large projects
– leads to a higher quality product
– makes it easier to find and correct errors
– increases the reusability of solutions
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Managing Large Projects
• Makes a large project more manageable...

• Easier to understand tasks that are smaller 
and less complex 

• Smaller tasks are less demanding of resources
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Faster Project Development
• Is faster for large projects...

• Different people work on different modules
• Then put their work together

• Different modules developed at the same time
– Speeds up the overall project
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Higher Quality Product
• Leads to a higher quality product...

• Assign people to use their strengths
• Programmers with knowledge and skills in a 

specific area, such as graphics, accounting, or 
data communications, can be assigned to the 
parts of the project that require those skills
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Correcting Errors
• Makes it easier to find and correct errors...

• Sometimes the hardest part of debugging is 
finding out where the error is coming from
– And solving it is the easy part
– (Sometimes!)

• Modular development makes it easier to isolate 
the part of the software that is causing trouble
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Reuse of Code (Solutions)
• Increases the reusability of solutions…

• Solutions to small, targeted problems are 
more likely to be useful elsewhere than 
solutions to bigger problems
– e.g., getting valid user input (returns one int)

vs. getting and calculating quiz grades

• They are more likely to be reusable code 
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Libraries
• Over time, you may develop your own 

“library” of useful functions

• Just like Python has libraries for doing things 
with strings, opening and writing to files, and 
other common tasks you might want to do
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Final In-Class Exercise
• What functions would you need to write a 

tic-tac-toe program that plays from the 
terminal?

• How would they interact?
• Draw a diagram if you need to!
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Any Other Questions?
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Announcements
• We’ll go over the exam in class next time

– Bring your exam with you!

• Homework 7 is out
– Due by Thursday (Oct 29nd) at 8:59:59 PM

• Project 1 will be out Oct 29th
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