
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 15 – Program Design

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered
• Functions

– Returning values
– Returning multiple values at once

• Modifying parameters
– Mutable
– Immutable

• Modular programming

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To discuss the details of “good code”
• To learn how to design a program
• How to break it down into smaller pieces

– Top Down Design
• To introduce two methods of implementation
• To learn more about Modular Development

www.umbc.edu

“Good Code” – Readability

www.umbc.edu

Motivation
• We’ve talked a lot about certain ‘good habits’

we’d like you all to get in while writing code
– What are some of them?

• There are two main reasons for this
– Readability
– Adaptability

www.umbc.edu

Readability
• Having your code be readable is important,

both for your sanity and someone else’s

• Having highly readable code makes it easier to:
– Figure out what you’re doing while writing the code
– Figure out what the code is doing when you come

back to look at it a year later
– Have other people read and understand your code

www.umbc.edu

Improving Readability
• Improving readability of your code can be

accomplished in a number of ways
– Comments
– Meaningful variable names
– Breaking code down into functions
– Following consistent naming conventions
– Language choice
– File organization

www.umbc.edu

Readability Example
• What does the following code snippet do?

def nS(p, c):
l = len(p)
if (l >= 4):

c += 1
print(p)
if (l >= 9):

return p, c
FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

www.umbc.edu

Readability Example
• What if I added meaningful variable names?

def nS(p, c):
l = len(p)
if (l >= 4):

c += 1
print(p)
if (l >= 9):

return p, c
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• What if I added meaningful variable names?

def nextState(password, count):
length = len(password)
if (length >= 4):

count += 1
print(password)
if (length >= 9):

return password, count
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• And replaced the magic numbers with constants?

def nextState(password, count):
length = len(password)
if (length >= 4):

count += 1
print(password)
if (length >= 9):

return password, count
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• And replaced the magic numbers with constants?

def nextState(password, count):
length = len(password)
if (length >= MIN_LENGTH):

count += 1
print(password)
if (length >= MAX_LENGTH):

return password, count
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• And added vertical space?

def nextState(password, count):
length = len(password)
if (length >= MIN_LENGTH):

count += 1
print(password)
if (length >= MAX_LENGTH):

return password, count
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• And added vertical space?

def nextState(password, count):
length = len(password)

if (length >= MIN_LENGTH):
count += 1
print(password)

if (length >= MAX_LENGTH):
return password, count

FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• Maybe even some comments?

def nextState(password, count):
length = len(password)

if (length >= MIN_LENGTH):
count += 1
print(password)

if (length >= MAX_LENGTH):
return password, count

FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• Maybe even some comments?

def nextState(password, count):
length = len(password)

if long enough, count as a password
if (length >= MIN_LENGTH):

count += 1
print(password)

if max length, don't do any more
if (length >= MAX_LENGTH):

return password, count
FUNCTION CONTINUES...

www.umbc.edu

Readability Example
• Now the purpose of the code is a bit clearer!

– (It’s actually part of some code that generates a
complete list of the possible passwords for a
swipe-based login system on a smart phone)

• You can see how small, simple changes
increase the readability of a piece of code

www.umbc.edu

Commenting is an “Art”
• Though it may sound pretentious, it’s true

• There are NO hard and fast rules for when to a
piece of code should be commented
– Only guidelines
– (This doesn’t apply to required comments

like file headers, though!)

www.umbc.edu

General Guidelines
• If you have a complex conditional, give a brief

overview of what it accomplishes
check if car fits customer criteria
if color == "black" and int(numDoors) > 2 \

and int(price) < 27000:

• If you did something you think was clever,
comment that piece of code
– So that “future you” will understand it!

www.umbc.edu

General Guidelines
• Don’t write obvious comments

iterate over the list
for item in myList:

• Don’t comment every line
initialize the loop variable
choice = 1
loop until user chooses 0
while choice != 0

www.umbc.edu

“Good Code” – Adaptability

www.umbc.edu

Adaptability
• Often, what a program is supposed to do

evolves and changes as time goes on
– Well-written flexible programs can be easily

altered to do something new
– Rigid, poorly written programs often take a lot of

work to modify

• When coding, keep in mind that you might
want to change or extend something later

www.umbc.edu

Adaptability: Example
• Remember how we talked about not using

“magic numbers” in our code?

Bad:

def makeGrid():
temp = []
for i in range(0, 10):

temp.append([0] * 10)
return temp

Good:

def makeGrid():
temp = []
for i in range(0, GRID_SIZE):

temp.append([0] * GRID_SIZE)
return temp

www.umbc.edu

Adaptability: Example
• In the whole of this program we use
GRID_SIZE a dozen times or more
– What if we suddenly want a bigger or smaller

grid? Or a variable sized grid?
– If we’ve left it as 10, it’s very hard to change

• But GRID_SIZE is very easy to change
– Our program is more adaptable

www.umbc.edu

Solving Problems

www.umbc.edu

Simple Algorithms
• Input

– What information we will be given, or will ask for

• Process
– The steps we will take to reach our specific goal

• Output
– The final product that we will produce

www.umbc.edu

More Complicated Algorithms
• We can apply the same principles to more

complicated algorithms and programs

• There may be multiple sets of input/output,
and we may perform more than one process

www.umbc.edu

Complex Problems
• If we only take a problem in one piece, it may

seem too complicated to even begin to solve
– Creating your own word processor
– Making a video game from scratch
– A program that recommends classes based

on availability, how often the class is
offered, and the professor’s rating

www.umbc.edu

Top Down Design

www.umbc.edu

Top Down Design
• Computer programmers use a divide and

conquer approach to problem solving:
– Break the problem into parts
– Solve each part individually
– Assemble into the larger solution

• These techniques are known as
top down design and modular development

www.umbc.edu

Top Down Design
• Breaking the problem down into pieces makes

it more manageable to solve

• Top-down design is a process in which a big
problem is broken down into small sub-
problems, which can themselves be broken
down into even smaller sub-problems

www.umbc.edu

Top Down Design: Illustration
• First, start with a

clear statement of
the problem or
concept

• A single big idea

Big Idea

www.umbc.edu

Top Down Design: Illustration
• Next, break it down

into several parts
Big Idea

Part 1 Part 2 Part 3

www.umbc.edu

Top Down Design: Illustration
• Next, break it down

into several parts
• If any of those parts

can be further
broken down, then
the process
continues…

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B

www.umbc.edu

Top Down Design: Illustration
• And so on…

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration
• Your final design

might look like this
chart, which shows
the overall structure
of the smaller pieces
that together make
up the “big idea” of
the program

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration
• This is like an

upside-down tree,
where each of the
nodes represents a
process

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration
• The bottom nodes

represent pieces
that need to be
developed and then
recombined to
create the overall
solution to the
original problem.

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Analogy: Paper Outline
• Think of it as an outline for a paper you’re

writing for a class assignment

• You don’t just start writing things down
– You come up with a plan of the important points

you’ll cover, and in what order
– This helps you to formulate your thoughts as well

www.umbc.edu

Implementing from a
Top Down Design

www.umbc.edu

Bottom Up Implementation
• Develop each of the

modules separately
– Test that each one

works as expected

• Then combine into
their larger parts
– Continue until the

program is complete

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.BPart 2.B.1

Part 2.B.2

www.umbc.edu

Bottom Up Implementation
• To test your functions, you will probably use
main() as a (temporary) testing bed

• Calling functions with different test inputs
– Ensuring that functions “play nicely” together

www.umbc.edu

Top Down Implementation
• Create “dummy” functions that fulfill the

requirements, but don’t perform their job
– For example, a function that is supposed to take in

a file name and return the weighted grades simply
returns a 1

• Write up a “functional” main() that calls
these dummy functions
– Help pinpoint other functions you may need

www.umbc.edu

How To Implement?
• Top down? Or bottom up?

• It’s up to you!
– As you do more programming, you will

develop your own preference and style

• For now, just use something – don’t code up
everything at once without testing anything!

www.umbc.edu

In-Class Example

www.umbc.edu

In-Class Example
• (Expanding on the “Used Car Lot” from Lab 8)
• You run a Used Car Lot franchise, with

multiple locations in the area
– Every morning you get a list of available cars from

each location as a separate file
– Customers may come in and request any

combination of features (color, price, etc.)
– You have to handle your stock for the day, and

handle customers who ask for impossible things

www.umbc.edu

In-Class Example
• What is the “big picture” problem?

• What sort of tasks do you need to handle?
– What functions would you make?
– How would they interact?
– What does each function take in and return?

• What will your main() look like?

www.umbc.edu

In-Class Example
• Specifics:

– Keep track of what cars are available at each
location, and which have already been sold

• Read in stock at beginning of program (“morning”)
• Write down stock at end of the program (“closing shop”)

– Don’t accept requests for things like 8 door cars
– Customers don’t need a preference for everything

• e.g., a 4 door under $35,000 – but don’t care what color

– Offer the option to buy from another location

www.umbc.edu

Modular Development

www.umbc.edu

Why Use Modular Development?
• Modular development of computer software:

– makes a large project more manageable
– is faster for large projects
– leads to a higher quality product
– makes it easier to find and correct errors
– increases the reusability of solutions

www.umbc.edu

Managing Large Projects
• Makes a large project more manageable...

• Easier to understand tasks that are smaller
and less complex

• Smaller tasks are less demanding of resources

www.umbc.edu

Faster Project Development
• Is faster for large projects...

• Different people work on different modules
• Then put their work together

• Different modules developed at the same time
– Speeds up the overall project

www.umbc.edu

Higher Quality Product
• Leads to a higher quality product...

• Assign people to use their strengths
• Programmers with knowledge and skills in a

specific area, such as graphics, accounting, or
data communications, can be assigned to the
parts of the project that require those skills

www.umbc.edu

Correcting Errors
• Makes it easier to find and correct errors...

• Sometimes the hardest part of debugging is
finding out where the error is coming from
– And solving it is the easy part
– (Sometimes!)

• Modular development makes it easier to isolate
the part of the software that is causing trouble

www.umbc.edu

Reuse of Code (Solutions)
• Increases the reusability of solutions…

• Solutions to small, targeted problems are
more likely to be useful elsewhere than
solutions to bigger problems
– e.g., getting valid user input (returns one int)

vs. getting and calculating quiz grades

• They are more likely to be reusable code

www.umbc.edu

Libraries
• Over time, you may develop your own

“library” of useful functions

• Just like Python has libraries for doing things
with strings, opening and writing to files, and
other common tasks you might want to do

www.umbc.edu

Final In-Class Exercise
• What functions would you need to write a

tic-tac-toe program that plays from the
terminal?

• How would they interact?
• Draw a diagram if you need to!

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• We’ll go over the exam in class next time

– Bring your exam with you!

• Homework 7 is out
– Due by Thursday (Oct 29nd) at 8:59:59 PM

• Project 1 will be out Oct 29th

	CMSC201� Computer Science I for Majors��Lecture 15 – Program Design
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	“Good Code” – Readability
	Motivation
	Readability
	Improving Readability
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Readability Example
	Commenting is an “Art”
	General Guidelines
	General Guidelines
	“Good Code” – Adaptability
	Adaptability
	Adaptability: Example
	Adaptability: Example
	Solving Problems
	Simple Algorithms
	More Complicated Algorithms
	Complex Problems
	Top Down Design
	Top Down Design
	Top Down Design
	Top Down Design: Illustration
	Top Down Design: Illustration
	Top Down Design: Illustration
	Top Down Design: Illustration
	Top Down Design: Illustration
	Top Down Design: Illustration
	Top Down Design: Illustration
	Analogy: Paper Outline
	Implementing from a �Top Down Design
	Bottom Up Implementation
	Bottom Up Implementation
	Top Down Implementation
	How To Implement?
	In-Class Example
	In-Class Example
	In-Class Example
	In-Class Example
	Modular Development
	Why Use Modular Development?
	Managing Large Projects
	Faster Project Development
	Higher Quality Product
	Correcting Errors
	Reuse of Code (Solutions)
	Libraries
	Final In-Class Exercise
	Any Other Questions?
	Announcements

